Social Links Search
Tools
Close

  

Close

MICHIGAN WEATHER

MSU Researchers Seeking Solutions for Spotted Wing Drosophila

MSU Researchers Seeking Solutions for Spotted Wing Drosophila


Spotted wing drosophila (SWD), a small fly native to Asia that first appeared in Michigan in 2010, isn’t like most pests.

Populations of crop-damaging insects tend to have distinct generations. Not SWD. Several generations overlap and build through the year, attacking vulnerable agricultural crops and wild plants. The situation has created a major challenge for the Michigan berry and cherry industries.

Rufus Isaacs, a professor in the Michigan State University Department of Entomology, was one of the first to discover the pest in the state 13 years ago. While researchers didn’t know much about SWD then, they’ve had to get up to speed quickly.

“SWD is so destructive because it can insert eggs into ripening fruit,” said Isaacs, whose work is supported in part by MSU AgBioResearch. “Larvae can be present in harvested fruit, which can be a big problem for producers. It is also able to reproduce so quickly to build up the population, and it can infest wild fruit outside of farms, creating a reservoir population that continually invades crop fields after they’re treated.”

After hearing about SWD arriving in California in 2008 and then being detected in Florida in 2009, concerns began to mount.

“Shortly after SWD was found in Florida, I went to a conference in Oregon where we discussed measures we may need to take to get ready for the pest,” Isaacs said. “We expected it would be in Michigan before too long.”

Sure enough, Isaacs was right. He received a grant from Project GREEEN — a partnership among MSU AgBioResearch, MSU Extension and the plant agriculture industries of Michigan — in 2010 to monitor for SWD. Isaacs worked with members of the MSU Fruit Team to set small plastic traps with holes that were filled with a cider vinegar lure.

In late 2010, SWD was collected from a site in West Michigan. At that point, the difficult work began and persists today. Research in Isaacs’ lab has been performed in partnership with mostly blueberry and raspberry growers.

The team has tested already-registered pesticides to determine their efficacy, as well as non-chemical controls such as pruning, mulching and physical exclusion methods, where growers place netting around and on top of crops as they begin to ripen.

As a result of this research, online resources have been created to assist growers with SWD identification, pesticide timing and other management strategies.

“We want to ensure we’re responsive to grower needs, first and foremost,” Isaacs said. “That’s why the pairing of research and grower education programs through MSU Extension is so valuable to our team.”

Dennis Vander Kooi, a blueberry grower and owner of Woodland Enterprises Berry Farms in Zeeland, Michigan, and his family have been working with MSU researchers for many years. He is also a board member of the Michigan Blueberry Commission (MBC), helping to set research priorities for the industry.

“Rufus is one of the nation’s leading researchers on this issue, and we’ve worked with others at MSU as well,” Vander Kooi said. “He’s run several experiments on our farm, and we’ve learned a lot from them. The MBC has supported this work and will continue to in the future as we look for effective ways to manage this pest.”

Vander Kooi said the blueberry industry is undergoing a rejuvenation in Michigan, adopting newer genetics and planting varieties that meet the demands of today’s consumers. This, in conjunction with SWD, makes it a critical time for growers as they look to protect an industry that contributes nearly $132 million to the state’s economy, according to the Michigan Ag Council.

“With the creation of the MBC in 2017, we got the opportunity to start advocating for more dollars for research, and MSU has been instrumental in that,” he said. “To date, we’ve supported more than $390,000 worth of research, much of that going to MSU, and leveraged an additional $600,000 in other funding.”

In addition to the MBC, Project GREEEN has been a significant supporter of Isaacs’ SWD efforts, along with state funding through the Specialty Crop Block Grant program and national projects funded by the U.S. Department of Agriculture (USDA).

Assessing biological control options

One of the primary challenges for scientists is focusing on immediate grower needs while also investigating long-term management tactics. It’s a monumental task to balance both simultaneously.

Alongside Isaacs, Marianna Szucs, an assistant professor in the Department of Entomology, has been exploring biological control to reduce populations in the long run. As she noted, when SWD came to the U.S., its natural predators did not.

“Anytime there is introduction of an invasive pest, one of the main issues is that the new landscape doesn’t have natural enemies for it,” she said. “They don’t come with the pest, and the native insects in the new place aren’t equipped to deal with it right away. What we wanted to know is if we exposed parasitoid wasps native to Michigan to SWD, would they begin to see them as a food source?”

A parasitoid insect lays its eggs in or on a host insect, and the developing larvae consume the host until it eventually dies.

Szucs and her team chose two parasitoid wasp species commonly found throughout North America. Researchers initially saw that attack rates in the wild were quite low, and the ability of native species to rapidly adapt to a new food source was unknown. In the lab, the parasitoids were exposed to SWD and forced to prey on them.

Within three generations of selection from a small number of parasitoids — 30 wasps or fewer — successful parasitism improved by 259% for one species and 88% for the other.

“Obviously this is an artificial scenario because we only gave them one option, and in the wild they only attack something if they know to do it,” Szucs said. “But this was a novel way to show that there is some potential to raise native parasitoids and influence their fitness to attack SWD.”

Besides improving native species, the other biological control option is to introduce natural predators. That’s what an MSU team including Isaacs has done with the samba wasp, which is native to Asia. After years of testing and applying for permits, the USDA Animal Plant Health Inspection Service and Michigan Department of Agriculture and Rural Development (MDARD) approved the release of the samba wasp in SWD-threatened locations.

The samba wasp detects already-infested fruit and targets the smallest stages of SWD larvae. Laying its eggs inside its host, the growing samba wasp feeds and ultimately kills the larvae, emerging as a wasp in



Source: msu.edu
 

Photo Credit: pexals-pixabay

NCGA Competition Seeks Innovative Uses for Michigan Field Corn NCGA Competition Seeks Innovative Uses for Michigan Field Corn
Ag Preservation Fund Board, Corn Committee Selections Made Ag Preservation Fund Board, Corn Committee Selections Made

Categories: Michigan, Crops, General

Subscribe to Farms.com newsletters

Crop News

Rural Lifestyle News

Livestock News

General News

Government & Policy News

National News

Back To Top